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SEM & Transport Phenomena

B These problems are particularly challenging because, unlike diffusion, where
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implies rapid decay of high wavenumber (k) components (and errors), the high-k
components and errors in advection-dominated problems persist.

B Turbulence provides a classic example of this phenomena:

Turbulent pipe flow:
(a) Re, = 550

(b) Re,= 1000

by G. Khoury, KTH

Introduction

B The spectral element method (SEM) is a high-order weighted residual
technique in which the computational domain is tessellated into
— curvilinear squares or triangles in 2D, or
— curvilinear bricks or tetrahedra in 3D.

® Within each of these elements (squares, bricks, etc.) the solution is
represented by Ath-order polynomials, where N=5-15 is most common but
N=1 to 100 or beyond is feasible.

2D basis function, N=10
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Excellent transport properties, even for non-smooth
solutions

Tnitial Condition

K, =8 N K =4, N

Convection of non-smooth data on a 32x32
arid (K, x K, spectral elements of order N). (cf. Gottlieb & Orszag 77)

SEM & Transport Phenomena

B The main advantage of the SEM is manifest in transport problems that are
characterized by first-order differential operators in space, e.g.
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Adveetion: i +c-Vu =10 (1)
ot
. U Ju Y .
Advection-Diffusion: Fn + ¢-Vu = vViu (2)
ot
L du 2 .
Navier-Stokos: n + u-Vu = —-Vp + vVu (3)

Vou=20

® |n nondimensional form, we have |u| ~1, v = 1/Pe for (2) and v=1/Re for (3),
respective inverse Peclet and Reynolds numbers, which are small for most
engineering problems.

B Such problems are characterized by minimal dissipation ->
The solution propagates for long times with minimal decay or energy loss.
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B Fraction of accurately resolved modes is increased
only through increasing order (N orp)




Influence of Scaling on Discretization

Large problem sizes enabled by peta- and exascale computers allow propagation of

small features (size A) over distances L >> A.

— Dispersion errors accumulate linearly with time:

If speed ~ 1, then t;;,, ~ L/ A

~[correct speed — numerical speed| * t (for each wavenumber)

2 error s,y ~ (L /A ) * | numerical dispersion error |

— For fixed final error &, require: numerical dispersion error ~ (1 /L)&, << 1.

— We want methods with low dispersion error!

High-order methods can efficiently deliver small dispersion errors.
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Cumulative Dispersion at t=10 for Varying Order & Resolution

SEM, n=90
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Finite Difference, n=200
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Linear Advection Example

Here, we consider linear advection with periodic BCs on [0,1]:

J = w(l, )

With speed ¢ = 1, the travelling wave
solution should return to the initial

condition after each unit time.

This result is not realized numerically,
especially for low-order discretizations.

Although the initial condition (black) is
well-resolved with n=200 points, the 29-
order solution exhibits trailing waves (red)

even after one revolution.

don: 2nc-Order Finite Diference, n=200
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Matlab Demos

B demo_fd2.m
B demo_fd4.m

® demo_sem90.m

Numerical Dispersion, 2r9-order Spatial Discretization

H At later times, the dispersion just becomes worse...
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Cumulative Dispersion at t=10 for Varying Order: FD & SEM
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B The 90 point SEM with N=9 has much less dispersion
than 4th-order FD with n=200 points.

This +2X savings in 1D translates into > 8X savings in 3D.
(To leading order, cost ~ n.)

B Note that one can also go to higher order FD (and there are
some advantages over SEM).

However, there are also many advantages (BCs, geometric
flexibility) to the SEM.




SEM Derivation
® We turn now to the heart of the course.

B We will begin with development of the SEM in 1D for the
— Poisson equation
— steady convection-diffusion
— unsteady advection
These are constituent subproblems in the simulation of
incompressible flows.

B We then turn to higher space dimensions, with a primary focus on
2D, for conciseness.

Trial Solution and Residual

N

Spectral Element Method: 1D

od of undetermined coefficients.

satisfy the homogencous Dir

that is,

8 we let n — 00 for a reasonabic sct of (?JS.

it is most common to take the trial and test spaces 0 be the same,

Trial Solution and Residual

The trial solution has the form

i3
w(x) = Z!D'j
=1

).

‘s are the basis funclions.

s arc the basis cocfficients.

We define the residual, v(a;u) = r(x), as

. d*u
rx) = fla) + 5.
@) = f@) + T
Tt is clear that r is some measure of the error given that

r=0 ff vw=u1u

(In fact, it is the only measure of error available to us.)

Reducing Continuity to C°

It appears that « must be twice differentiable.

However, il we integrale by parts, we can reduce the continuily
!‘L‘(l\lh'(‘TllL‘,YltH on u.

Let Z denote the Lh.s. of the preceding equation:

- / Pdvdu
= o dad o
L du du
= — —d
/“ dr dr o

For a varicty of technical reasons, it's gencrally a good idea to balance
the continuity requirements ol » and u, to the extent possible.




Weighted Residual / Variational Formulation

s in X .

Best Fit Property, 2/4

We now demonstrate that j|u — @i, < [jw — all, Yw € X'

Let e:=u—dand v:=w—u & XJ.

Lor any w € X3 we have

i 2 oo o2
W= Wy, — VT T g
Hy 1 ell2
1Y T €l
rt ; ;
= | (v+e){vt+e)dr
40
o, o e,
= § @Wydr + 2 vede + | (¢)dr
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Important Properties of the Galerkin Formulation

B An essential property of the Galerkin formulation for the Poisson
equation is that the solution is the best fit in the approximation space,
with respect to the energy norm.

Specifically, we consider the bilinear form,
1 dodu

which is in fact a norm for all u satisfying the boundary conditions.

B [t is straightforward to show that our Galerkin solution, i, is the closest
solution to the exact # in the @-norm. That is,

flu=dfl, < [[w=i]l, foralwe X,V

W In fact, u is closer to I than the interpolant of .

Best Fit Property, 3/4

= | vude + | vd'dr — va
Jo J
rto,
= | vudr — v far
S0

Best Fit Property, 1/4
Define:

£ = {’z' : / w2 dr < o0 }
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H' = {’U D€ L, /&2 (@) du < x }
Hd {’l' oeH, vlpn = U}

Then, Yu,v € H},

a{u,v) = / w'v' dx (a inner-product)
JQ
lolla = Y a{v,v) {@-norm)
[levlle = |aly/alv,v) acR
lelle = 0iffe=0.

Best Fit Property  4/4

In summary, for any w € Xé\“ we hawe

o =ally = llo+w—all;
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Thus, of e/l functions in . 1 is the closest to @ in the a-norm.

A deeper analysis establishes that, lor @ analytic, one has

Hﬂ*’“HH}J < Ce W




Best Fit Viewed as a Projection

tement is cquivalent to

~ N
ei=u—t g Xy

Formulation of the Discrete Problem

We proceed i a siinilar way with the right-hand side. Assuining
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Formulation of the Discrete Problem

= Up to now, we've dealt with abstract issues and have established the
important best-fit property.

B From here on, we move to more practical issues.

Formulation of the Discrete Problem

which implics

Formulation of the Discrete Problem

We can now casily generale our discrete system that allows us to
cowpute the set of basis coefficients. Let

w = (wjuo ... Uw)yl‘,

v o= (s ...ov)t.

Then

7= /l"u’dl’
5]

[z (Z w;(w)r,) (Z c‘;}(w)u:,) dw
=1 =

J
0 n
= >3 (/ (‘)'7(vr)oj’(:r)r/vr) 2y
Q - X
P
n n )
Sy =
14—

with the (global) stiffness matrir, A, given hy

Ay = /o}(r)ol(z)da‘,
Jo

Choice of Spaces & Bases

B At this point, it's time to get specific and choose the space, X,",
and associated basis, { ¢; }.

B The former influences convergence, i.e.,
— How large or small n must be for a given error.

W The latter influences implementation, i.e.,
— details and level of complexity, and
— performance (time to solution, for a given error).

B Keep in mind that our goal is to solve high Re / Pe flow problems,
so the convergence question is driven by considerations in the
convection-dominated limit.

W [nterestingly, for incompressible or low Mach-number flows, the
performance question is largely driven by the pressure-Poisson
equation, which governs the fastest time-scale in the problem.




Incompressible Navier-Stokes Equations

.
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3 © Re
V-u = Q0
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Reynolds number Re > ~1000
— small amount of diffusion
— highly nonlinear (small scale structures result)

Must discretize in space and time...

Aside: GLL Points and Legendre Polynomials
The GLL points are the zeros of (1 — %) L) ().
The Tegendre polynomials are orthogonal with respect fo the 7.2 inmer prodner,

| L@ Lydr = 8, Lz e,
} ; 2

They cai be eiliciently and bly compiied using the 3-leri recurremce,

Lo{zj =1, Li{z) ==,

-

L) = £ [k = Dada 1) = (b= 1) by 2{2)].

Spaces and Bases for the SEM

B For the spectral element method in R, we choose XN to be the
space of piecewise polynomials of degree N on each element, 2¢,

e=1,...,E. For example:
N7

B Within each element, one has a choice between modal or nodal
bases.

B The choice is largely immaterial.

W |t js easy to convert from modal to nodal and back, provided that
both representations are stable.

B So, within a give code, we might alternate between representations,
depending on the operation at hand.

Lagrange Polynomials: Good and Bad Point Distributions

Uniform » Gauss-Lobatto-Legendre

Unstable and Stable Bases within the Elements

B Examples of unstable bases are:
— Monomials (modal): @, = x/

— High-order Lagrange interpolants (nodal) on uniformly-spaced
points.

B Examples of stable bases are:
— Orthogonal polynomials (modal), e.g.,
« Legendre polynomials: L(x), or
* bubble functions: @(x) := Ly,(x) — Lis(X)-
— Lagrange (nodal) polynomials based on Gauss quadrature

points (e.g., Gauss-Legendre, Gauss-Chebyshev, Gauss-
Lobatto-Legendre, etc.)

B For the SEM, we typically use nodal bases on the Gauss-Lobatto-
Legendre (GLL) quadrature points. However, we often map back
and forth between GLL-based nodal values and Legendre or
bubble function modal bases, with minimal information loss.

Piecewise Polynomial Bases: Linear and Quadratic
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Figure 2: Examples of one-dimensional pi

linear (left) and piecewise quadratic (right) La-
grangian basis functions, ¢o(x) and @s(z), with associated element support, ¢, e =1,..., E.

B Linear case results in A being tridiagonal (b.w. = 1)

B Q: What is matrix bandwidth for piecewise quadratic case?




Basis functions for N=1, E=5 on element 3.

Kokl 0?2 ] ”:(7273 04 05

2 basis functions for N=4, E=5

Qo1 Q2 Q3 04 I Q5 ‘

2 basis functions for N=2, E=5

2 basis functions for N=5, E=5

Q1 @ 03 04 0

2 basis functions for N=3, E=5

2 basis functions for N=6, E=5




2 basis functions for N=10, E=5
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Working with SEM Bases — 1D

B Recall our global system to be solved:
Au=Bf

B For most discretizations (finite difference, finite volume, finite element,
spectral element, etc.) iterative solvers are the fastest possible in 3D.

B These solvers require only the action of a matrix times a vector (usually
implemented via a subroutine) and do not require explicit formation of
the matrix or its LU factorization.

B Thus, we consider matrix-free operator evaluation in which we never
form the global nor (ultimately in 2D or 3D) the local stiffness matrix.

B [t is nonetheless useful to understand the matrix assembly process, as
notation and analysis in linear algebra is quite helpful.

— Also, for matlab, it generally pays to assemble the 1D matrices.

Local Modal Bases, N=8

W = Lpeiids —

Lp—11&7

*Modal bases are particularly useful for filtering (higher k - higher frequency)
«It is easy to convert between stable nodal and modal bases.

Spectral Element Bases, 1D

o On QF we have,  wlx)] =

& = GLL quadrature points € [—1, ]

Working with SEM Bases — 1D

B Keys to high-performance in 3D:
1. Low numerical dispersion (2x savings in each direction, 8x overall)
2. Element-by-element assembly of solution and data
3. Use of GLL-based Lagrangian interpolants and quadrature
» diagonal mass matrix, fast operator evaluation
. Global (and local!) matrix-free operator evaluation
. Fast tensor-product based local operator evaluation
. Fast tensor-product based local inverses
. Matrix-matrix product based kernels

N o oA

® Only 1—3 are applicable in 1D.
® We'll start with 2 and 3, and come back to 4-7 shortly.

Spectral Element Bases, 1D

ho(r)  har) /_N

/ , \ T

P - = t k 1

|— red [71.vu'—.|

Return to the WRT and consider v, uw € X (but not X' for now).
Tet

dv du dv du

7z = ——dy = ——dx. = VAR
/Q dx dx o ; /gn dx ll.’lf( g ;

With L := 7¢ — 727! we have,

7e dv dud 2 1 dvdu
= ——dr = — ———dr.
Joe drdr Le Joy drdr




Spectral Element Bases, 1D

hafr) () m

o) = I L 4 |
3 t b 4
o 6% & PRI eV U
f——r e = [-1,1]—]
Using
= {7} = r)
= N - L

Assembly of 1D Stiffness Matrix

The left-hand side of our WR statement reads

7 =

-

Local 1D Stiffness Matrix

into the local infegral yieids

Inserting the local be

Working with the unassembled matrix, A,

emhedded in the A°s

H can be computed independently, in parallel!

e Keep in mind that «® ig simpiy the set of local basis coefficlents on {5,

Assembly of 1D Stiffness Matrix

and similarly for ¢°, we have

If we define u® := (ufuf ... ufy

T¢

N N
ZZ uf ALut = () A

gty T = -
=0 j=0

Uy, = e . A= Ae

AE

Define v similarly using v®.

What about Continuity ?

uh

Becanse X € H', we must have v (and v) e continuous.
Thug, we can’t allow functious like the one above.

If u € XV then we must have v}, = v or, in general, v, = 113’{

In higher space dimensions, a similar rule applies.
For example, in 2D, we have for any v € XV

here xt — (16 o
where x3; = (25, v§)-




Continuity is reflected by global numbering:

gy

2 2
ey |ui u3

Global numbering: /
JEETIAY

|

|

|

¢
L /
X

Continuity is reflected by global numbering:

Note that 1}

g
S fo nde

=
I

Contmutty is reflected by global numbermg

Note that ui = u; are copies of wq by virtue of the pair of 1s in coluinn 5.

Continuity is reflected by global numbering:

For a continuo

iure #{0) = u(1) = 0, which implics uy = 1,y
i IETARERY:

Continuity is reflected by global numbering:
One the left,

ur, = (ulw

we have the distribution of the local basis cocflicients given in

\,,5/ 1 sy

up = Q@ 7

Note that u} = u} are copies of wy by virtue of the pair of 15 in column 5

Continuity is reflected by global numbering:

_ 'z
= (g w1ty .. Wtyyl)
ents are given by

So, for any u € X < H', there exists a global veetor Z
and Boolean matrix (¢ such that the local basis coeffi

ur, = QL
where
ur, = (el
u® = (ufuf &
and

= (uour ..oty )Y

These components allow us to cast the global (solvable) system in terms of
local (computable) quantities.

® u; is the only vector we work with in the SEM for 2D and 3D problems.

10



Stiffness Matrix Assembly

Returning to our WR statement and nsing uy = wo have

7

A = QA

2 Artd
It has a non-trivial null space of dimension 1 because we have yet to
apply the boundary conditions. (A times the consiant vecior is zero.)

At this point we need to restrict v and w to apply the boundary con-
ti re u, v € X3 C H}

s, 1.e., to ens

Application of Homogeneous Dirichlet Conditions

o 'I'he real strength of R, however, comes in the application of its transposc,

that u €

Application of Homogeneous Dirichlet Conditions

il

wg aind -

ni=mn+2Z{
ossenfially the 7 x
daletod

in generad, acconmts for aii points, inc. boundary ), then A is

dentity mafrix with rows corresponding to boundary points

Application of Homogeneous Dirichlet Conditions

© G LHAFK, J

here tuiction

« 'Tlis 18 the approach used i N

|7

by locael cocllicienl s,

Application of Homogeneous Dirichlet Conditions

e Here is an example of the restriction matrix applied to yield v = Ita:

wo
w 01 t
uz 1 Uz
uy 1 uz
N 1 ty
U 1 uz
ug 1 g
ug 1 ur
ug 10 ug

gy

2
I
[
&
|2

Application of Homogeneous Dirichlet Conditions
o Returning to our WR statement and wsing 2 = R%w, we can now explicitly
identify the global stiffness matrix A.

T = 74z = v"RARTy = T Au
o Recalling our carlier definitions, it's clear that we have
A = RARY = RQTALQRY
e Note that, for all v e XO\' C HJ]. we have

w, = QRTu

-y g — 1
e (J ensures that u,v € H-.
o R7 ensures that u,v € 'HL]).

11



Summary: SEM Stiffness Matrix

tor product, we ha

{ 2 !
R | - L BTy
= RQ' QR
{ ey
AN - 7
/oAl
{ A2
~ rg'l :
RQ'
{ 4¥
\ A

Final System of Equations

widerstad every detail:

o Notice how, equipped with the right tools, the derivation of the

weh (nuch) faster?!

r.h.s was

SEM Mass Matrix

Final System of Equations

e in all its detail, our solution (in iocal form) reads

and thelr inferactions have been carefuily established.

15, the

Correcting the RHS

Note: Our assumption of f € X' C H{ is way Loo restrictive.

o In [act, It sulfices 1o have J € £%, which allows jump discontinuites.

o T'hus, we can lift the boundary condition (R) and continuity (@) restric-
tions on fL and simply write the r.hos. as

Bl
B2

e

g = RQ’I'BLiL _ RQ"
BF_‘ iL

o Notice that f is now happily in £2 as there is no ) nor R to apply.

e On the left, however, we still have @ and R becanse v € Hy.

e These terms are an important part of the projection proc

BREAK

12



SEM, Next Steps

W Lecture 2: 1D
— GLL quadrature
— Other BCs: Neumann and periodic
— Advection
— Nonlinear example

B Lecture 3: 2D and 3D
— Matrix formulation
— Curvilinear / mesh transformations
— Preconditioned iterative solvers

N=4

Condition Number of A vs. Polynomial Order

Coretton o 1 Lapisin, 114150

[Monomials: x* /
7

OLLPOInS - N o)

Uniform Gauss-Lobatto-Legendre A
O]

B Monomials and Lagrange interpolants on uniform points
exhibit exponentional growth in condition number.

B With just a 7x7 system the monomials would lose 10
significant digits (of 15, in 64-bit arithmetic).

Quadrature Rules for the SEM

B One of the primary reasons for choosing Gauss-Lobatto-Legendre
points as nodal points is that they yield well-conditioned systems.
(More on this point shortly.)

| |t also allows us to significantly simplify operator evaluation,
especially in 3D, which is where cost counts the most!

B Let’s begin with the stability (i.e., conditioning) issue.

Quadrature for the SEM

these integrals,

Conditioning of the SEM Operators

B The condition number, K, of a linear system governs the round-off
error and, ultimately, the number of correct digits retained when
multiplying a vector by a matrix or its inverse.

B For a symmetric positive definite (SPD) matrix A (as in our case), K'is
the ratio of max to min eigenvalues:

K~ M/ M

‘max

| If K~ /0%, you can expect to lose ~ k digits when solving Au = g,
so a smaller condition number is better.

m As indicated earlier, the condition number of A is governed by the
choice of basis functions.

B In infinite-precision arithmetic, however, the choice is immaterial since

the Galerkin scheme ensures that we would get the same best-fit sol'n.

What is the highest possible polynomial order, M?
o Lot's look at the cardinality, |. |, of the sets.

[Py =M+1
[pr] + [&] = 2N +2
M+1=2N+2 = M =2N+1

o Indeed. it is possible to find & and pg such that all polynomials of
degree < M = 2N 4 1 are inlegraled exactly.

e The & ’s are the zeros of the Nth-order Legendre polynomial, Ly (r).

e The pg’s are the integrals of the cardinal Lagrange polynomials pass-
ing through these points:.

[t - - !
P = /71 by (r) dr, hy € Py, hi(&5) = Orj-

13



Gauss-Lobatto-Legendre Quadrature for the SEM

Quadrature for the SEM

o In this case, the ;s are the zeros of (1 —

e As before, the pg's are the integrals of the cardinal Lagrange poly-
nomials passing throngh these points:.

’/‘\
o= 1 Ay
Jo1

hy(r)dr. hi € Py, hi(é5) = Oy

e Let’s return to the local integrals in our WRT!

s A uot exact) for

s As

variable coefficient problems.

Quadrature for the SEM

Quadrature for the SEM

where

e Tat P — digalné) Then 4¢ —

Quadrature for the SEM

o In fact, it is always possible to construct such a diagonal mass matrix.

— Simply start with a standard mass matrix and replace it by a
diagonal matrix having the same row sum as the original.

— This is often called mass lumping.

— The rule of thumb with quadrature is 10 ensure that the error is
small and that the resultant discrete operator has the correet speetral
properties (e.g., care is required for conwvection operators).

o What is key for the SEM is that it is & very good diagonal mass matrix
because of the high order,

The quadrature errors decay exponentially for smooth integrands.

Let’s Look at Some Examples
Let’s take the variable cocllicient problem

d du .
*E}”(T/) . b

“ and exact solution {i(«) = sin(a)) € HE.

in(z) — cos(z)).

e For this 1D example, we will form A, = block-diag(A®) on an
clement-by-clement. basis.

with p(z) = e

e The rhs in this case is f(z) =

o We will then assemble it and restriet it to vield A = RQTALQRY.

o We then set up therhs, g = RQYBr fr and solve 1 = A\g (matlab
notation).

e We plot (z;,ur) and (7. dr,) using local coordinates.

o T'inally, we check the pointwise error.

14



Convection-Diffusion Example

CD: Solution and Error, v = 102, E=3, N=21

R
SRS
IANENEN
EETERTIRY

® Here, in order to resolve the boundary layer, the last element
is 1/3 the size of the others. The erroris 2.e-12.

Convection-Diffusion Example

efu,u) =

= Pi L45.

o i ¢ := ding(<;) is the diagonal matrix of local velocity valuces, then

Matlab Code for Steady State Convection-Diffusion

= RAD?+AL«QHR?;
€ - RAQYHCLAQHR’;

LT - diag(2./LE};
AL = kron(LI,Ah};

Convection-Diffusion System of Equations

e The full system for the convection-diffusion cquation reads

(A+ Cyu = RQ'BLJ, |with
A = RQTALQRT,
¢ = RQYCLQRY.

Here, Ay :=block-diag(A%) and Cr:=block-diag{C*).
o If v ig congtant, then A% = 74 For variable v, we have

2 . P
A° = FDT]/C BD, v = diag(vf).

e Q: Why is it that 4¢ depends on L¢, but C¢ does not?

Matlab Demo: ss _cd_2012a.m
B What happens when we vary v ?
® Try small v for n even and n odd. Is there any significant difference?

B For small v, can you refine your mesh (h, p, or r refinement) to
recover a good solution?

B Exercise for later:

— Examine the behavior when you time-march the solution to a
steady state, both with and without a stabilizing filter.

— What is the impact of the filter in the well-resolved case?

15



Unsteady Convection-Diffusion Example

Spatial — Temporal Discretization

For simplicity, we consider BDF2/EXT2 and discretize in space with the WRT.
To begi

5
3

Unsteady Convection-Diffusion Example

e Rearrange and ovaluate cach term at time 7% — mAd,

it |
Eap

2AL

110 _ 18m=1 4 g, m—2 _ o,m-3

+ O(ATh

Spatial — Temporal Discretization

O simply,

vAt < 1, so
g(

onal for the SEM and that, typieally,
11 1 i Tinl

Unsteady Convection-Diffusion Example

e The viscous term is treated smplicitly,

P
da?

&0

=
3

o

e Conveetion and the lorcing arc treated explicitly via extrapolation,

sm—1
< . - + 0(At)

dim

of g1 _
( s >

=1 =2
3 (f"' [— d“d ) -3 (f"’ 2 i )

G 2
- <fH - rd“dI > + 0(AR)

dx

Additional Timestepping Considerations

o Wo typically use the 3rd-order schemes

g their stability diagram en-
compasses part of the imaginary axis, which is where the eigenvalues of
convection-dominated systems are found.

e The BDF3 and EXT3 formulae require prior values of « and the data,
s0 we typically starl with BDF1, 2, ..., 3, which means we arc at best
O(A#?) accurate. (Wlhy?)

e For turbulence, this generally doesn’t malter because the initial con-
ditions arc contrived. For restarted solutions it’s a bit annoying — onc
can always save multiple solutions for restart, whicli is our approach, or
switch to an RK scheme for start-up.
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Additional Timestepping Considerations

i€

® This question depends jointly on the

tions.

Stability of Various Timesteppers

B Derived from model problem

| Stability regions shown in the LAt plane (stable inside the curves)

! Nl ) - 072
Re N ®

Figure 1: Stability regions for (left) AB2 and BDF2/EXT?2, (center) AB3 and BDF3,
and (right) AB3 and BDF2/EXT2a.

B To make effective use of this plot, we need to know something about
the eigenvalues A of the discrete convection operator.
m But first, How are these plots generated?

Determining the Neutral-Stability Curve

du
Consider BDF2/EXT?2; and apply it to % = Au

30 — ™ D o™ 2 = 2MAL (Zum [ 2)'

Seck solutions of the form «™ = (2)™, z € C:

32 — 42771—1 + 2771—2 = 92AA? (QZm—l _ ;"1’2>'
3z —dz + 1 = 2\At (22 -1).

0.9 € [0,2r], and solve for AA:

2,020 it
A = 3e 4e j» l.
)

Matlab Code: stab.m

i.e-13; yaxis=[-ymawrii ymaxc+iil’: % Plot axes

-1); th=0:.001:2+pi; th-th’; ith=iivth; ci-oxp(ith);
1+0%ei 1./ei 1./(ei.#ei) 1./(ei.*ei.+ei)];

1dtabd =(Exdu)./(Exab3);  plot (.

1dtal
bdf3ex3=(Exbdf3) ./ (E+ex3); plot (bdf3ex:
bdf2ex2=(E¥bdf2) ./ (Exex2); plot (bdflex2,’k-7); % BDF2/EXT2

Relating Stability Region to At

e From the stabiiity curves, we know the Hinits on AAZ

e Tor Znd-order centered finite-differences, we know that the maximum
eigenvalue of the first-order aperator (4

{modulns)

maodnlng

of max AL

Relating Stability Region to At

e For the SEM, we usce the same definition of CFL. In this case, however, we
have to consider the minimum space of the GLL points, which have a spacing
similar to the Gauss-Lobatto Chebyshev (GLC) points shown below.
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Relating Stability Region to At

o It turns out that max [A] for the SEM is a bit larger than o/Atyy, by a factor
1.16 < § <1.5, which is plotled below as a [unction ol polynomial order.

SEM in Higher Dimensions

SEM in 2D and 3D

SEM in Higher Dimensions
e Deline ¢-inner product:

v Gu

SEM in 2D and 3D

m Objectives:
— Look at function definitions in 2D for a single element.
— Evaluate the Laplace operator w := Au in 2D and 3D.
— Explore preconditioning strategies for iterative solution of Au = g.

— Consider convection issues in 2D and 3D.

Spectral Element Basis Functions in 2D

= Nodal (Lagrangian) basis:

N N
W@, Plge = > ugy hi(r) ki (s)
i=0;=0
hi(r) € Py(r), hi(€5) = 645

] E_,,: Gauss-Lobatto-Legendre quadrature points:
- stability ( not uniformly distributed points )
- allows pointwise quadrature (for most operators...)
- easy to implement BCs and C° continuity

B Tensor-product forms: key to efficiency!

-

v = o
i — F—
2D basis function, N=10 ‘.1 . E F=3, N=4

18



Local Spectral Element Basis in 2D

1odostiin Yod U g
1

ogtiny  [Uo: 33ty

N=4

QRG] Yoo fUgaftiyn

201 211 Uo1 CEINCIEN

qalogitiio  f¥20  [U¥3ol¥ao

Evaluation of a(v,u)

I .
J apply
] quzxdre\rure

/
and Jp, = dot
A\

Spectral Element Operator Evaluation

. . . - ou
Consider evaluation of the partial derivative  w,, =
X,
1 Upg Mg G Mg M4q
i % w0
;“ﬂ’ Mig Moy E“ss:“u M‘\":, ,’,’\HZ,
o o
wor gy
Moy M)y ) gy |ty W, %
B D4 M= 1
Moy t) M1 My Jig) K
o o
iy b y

gt i [y
00410 20 30 440
-1({— —6—? W o

Evaluation of a(v,u)

Now consider the derivatives in the integrand,

i Wig 0 Ll

ke Tyl ]

Geometric Deformation in 2D

x = (zy)
= (z1,22)

2D basis function, N=10

~

N
u(z.y) = Z Z wj hi(ryhy(s) € Pw(r,s)

=0 j=0

z(ros) = > wy by hy(s), wlrs) = 3wy hilr) hyls)
%) i

e Chain rule:
Su Or Ou Os
Ordz  Oson’
Do i

i Budr  Ouds
7

o In R

Evaluation of a(v,u)

With a bit of rearranging,

pw\'[Gu Gol | Du
Dgv Gra Gy Dy

T = an(v.u)

Il
[
=
P
SF
~—
|
R0
= =
[\
P
SIS
~—
I

o Technically, this is A, becanse wo've yet to apply the BCs.

o Note the extensive use of quadrature, which allows the Gijs to
be diagonat:

2
(Gis)pg = PoPa-Tpq Z
k=1
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Evaluation of a(v,u) in R’

Tt should come as no surprise s

D is given by,

ISRl
=

3

{
I~ an{vy) = v |
\

e Look at the memory a

Gordon-Hall Mapping for Mesh Deformation

m Vertex deformation + Edge perturbations + Face perturbations

B Each perturbation function vanishes at the edge or face boundary, and
is blended linearly to the opposite side

Comparison of A in 2D and 1D

Adop =

with

Jpg ¢ ity

) and the Jacobian (J)

Gordon-Hall Mapping for Mesh Deformation

B Vertex deformation
+ Edge perturbations
+ Face perturbations

Generation of Mesh Deformaton

Care In Mesh Morphing

® Mesh morphing is very easy and adequate for many applications.

® Care must be used with non-affine mappings. Otherwise, the stability
derived from the GLL point distribution may be lost, e.g., stretching x=r ¢:

Can be cured by first morphing entire mesh, extracting vertex values, and re-
applying Gordon-Hall (in Nek5000, usrdat() instead of usrdat2() )

B Must avoid vertex angles near 0 and 180 deg - ill-conditioned systems.
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Impact of Mesh on Iteration Convergence

B [teration performance for conjugate-gradient iteration w/ overlapping
Schwarz preconditioning
B For “shape-regular” elements, iteration count is bounded w.r.t. E & N.

]
Figure 1: K'=93 conforming (left) and K = 77 nonconforming (right)
spectral element meshes for flow past a cylinder.

Table 1: Iteration Count for Cylinder Problem
Conforming_| Nonconforming
K |93 | 372 | 1488 | 77 | 308 | 1232
iter [ 68 | 107 | 161 |50 | 58 | 60

Iteration count bounded
with refinement - scalable

Enforcing Continuity in 2D

Enforcing Continuity in 2D

¢ ‘T compute the matrix-vector product Ax without assembiy, we need to
offect. the action of ) and Q7.

e Tl

pically done vi

mbroutines, e g | ag in the following example.

Q and QT implemented as subroutines

er g5 — ;i

end

eration is provided in the gs code within Nek30U0.

Enforcing Continuity in 2D

o Consider the following example:

Q) Q! 0?2

g Uy g Uy (0 1 L, 1,

o
u, us u, gy | 1 1

;) Uy Uy Uy gy

Fast Operator Evaluation in 2D

B Fast operator evaluation is central to the success of the SEM.

B The end user is interested in a solution to a given accuracy, as fast as
possible.

B The rapid convergence of high-order methods (often) implies a need for fewer
points. If it takes 10 times, longer to get the result, however, the method is
not interesting.

It turns out—for several reasons—that a properly implemented SEM is
competitive with traditional methods on a point-by-point cost basis, which
implies lower costs for the SEM because of the reduction in number of points.

Many of the ideas central to the performance of the SEM were laid out by
Steve Orszag in a seminal 1980 JCP article.

These ideas were an insightful extension of his pioneering work in spectral
methods in the 1970s.
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Fast Operator Evaluation in 2D

e need to evaluate inatrix vector products of the form w = Aw:

N

5
S D=3 wDj =3 wwhi; =UD".
= P pr

v

o Matrix-matrix products are intrisically fast.

Matlab Demo: asem_2d.m

function w = asem_2d(u,Dh,G11,G12,G22,R1,R2)

reshape(u,ni,n2); % Vector to "mesh® form

ub = (R1’*ub)+*R2; % Prolongate to full local coordinates

ti=Gil.%ur
t2=G12.*ur
w = Dh’*tl + t2xDh;

Fast Operator Evaluation in 2D

we b

Preconditioned Conjugate Gradient Iteration

e Starling with a guess x, the standard pca algorithm with M as

: follows:

.

Compute r

Jor b il comvergence:

" e mat-vec

+———— preconditioner

ralos Hke Ay ~

» The nmumber of iterations for m digits of acenracy
172 14

muti2 where k ia the condition n

Matlab Demo: mycg.m

The code shown here imple-
ments conjugate gradients us
ing the general Au; kernel.

[&1,Bh,Ch,Dh,zh,wh]=SEMhat (1) ;
nb=N+1; R=speye(nb); R=R(2:nb-1
+1; R=speye(ub); R=R(2:mb ,

; Ri=R; ni=size(R1,1);
); R2=R; n2=size(R2,1);

ol

% Compute Metrics and Jacobian using Cramer’s Rule for 2x2:
[¥,X]=neshgrid(zh,zh); % Deform XEY at this point, if you wish...
T=1xY;

% Compute Metrics and Jacobian using Cramer’s Rule for 2x2:

/ey A\ JarxeN-1 1/ ys -xs \

| 1= | | |5 1= xoeys - xesyr
\ sz ey / \yroye / 1Ny /

maK; yreDhY; x
/35 Ty=-xs./3;

Bh=wh#vwh’; {Diagonal mass matrix on ref. domain: B=rho_i rho_j

G11 = Bb.*J.*(rx.#rx + Ty.*#1y); % Pointwise collocation
i % for all of these terms!

£L o= 1 + 04X % Set rhe
g = Rix(Bb.+J.+fL)+R2’; g-reshape(g,ni#n2,1); % Make g a vector for pog.

asem = @(u,Dh,G11,G12,G22,R1,R2)asem_2d(u,Dh, 611,612,622, R1,R2);
¥ = speve(ni*n2); % Idemtity for PCG

tol = 1.8-10; maxit=400;

Preconditioned Conjugate Gradient Iteration

o One approach, originally due 1o Orsz
& Mund "84 and Canuto & Quarteroni
on the speetral element nodal points.

0, and subsequently explored by Deville
85, is to set up a low-order discretization

all the resultant—sparse—operator Agg,.

o The condition number of the preconditioned system, Afelmf'l scales ¢
independent of the problem sizel

o The advaniage here is that the sparse FEM system s much cheaper (0 solve than
the relatively full SEM system. Typically, however, one needs a good algebraic
multigrid solver because the resultant FEM mesh has high-aspeet vatio cells which
are troublesome for most preconditioners.

o
SO N %%

o o 5 o o o o ofo o ofo o o
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Two-Level Overlapping Additive Schwarz Preconditioner
(Dryja & Widlund 87, Pahl 93, PF 97, FMT 00)

Local Overlapping Solves: FEM-based Coarse Grid Solve: Poisson problem
Poisson problems with homogeneous using linear finite elements on entire
Dirichlet boundary conditions, A, e+ spectral element mesh, A, o (GLOBAL).

Navier-Stokes Time Advancement

|
o

® Nonlinear term: explicit
— k th-order backward difference formula / extrapolation (k=2 or 3)
— k th-order characteristics ~ (Pironneau '82, MPR ‘90)

B Linear Stokes problem: pressure/viscous decoupling:

— 3 Helmholtz solves for velocity (“easy” w/ Jacobi-precond.CG)
— (consistent) Poisson equation for pressure (computationally dominant)

B For LES, apply grid-scale spectral filter (F. & Mullen 01, Boyd '98)
— in spirit of HPF model (Schlatter 04)

Overlapping Additive Schwarz Smoother

= T 4—1 . .
© Mgchwary = 2 fle Ac ™ Re Dryja & Widlund 87,...
o Fast tensor-product solvers for A;l Rice et al. '64, Couzy '95

© Bypasses cell aspect-ratio problem

A7t =

S@HUdA+N, @) (S®S)T

Characteristics-Based Convection Treatment
(OIFS Scheme - Maday, Patera, Ronquist 90, Characteristics - Pironneau 82)

Idea: Solve Navier-Stokesin ~ Du _
Lagrangian framework: Dt

S{u)

N “n—1
N @5

J
S xnt "
J

- n._
~ X7 =x;

Extension to Navier-Stokes

Characteristics-Based Convection Treatment
(OIFS Scheme - Maday, Patera, Ronquist 90, Characteristics - Pironneau 82)

For velocity (or ¢), we compute the values of w4
by solving an auxiliary advection problem.
Du  3u— 4w 4o

2
- ,: £} = S e
Dt 2AF olar) = s

i
a

Sy

u +u-va't=0 on [t ],

ﬁn—q(xﬁ ) = 11’/—41()(‘ 1)
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Unsteady Stokes Problem at Each Step

Hu' + Vp'= gt + pa"? i,
v-u" =0 in §2.

H‘—( Loy i)
"\ Re At
1
3

2
ﬂu = %, ,dl = 2, ﬂg = —=
u Jinear (allows superposition)
u mplicit (large CFL, typ. 2-5)

B symmetric positive definite operators  (conjugate gradient iteration)

Pressure Solution Strategy: Ep" = g

1. Projection: compute best approximation from previous time steps

— Computep”in span{ ", p*2, ..., p"! } through straightforward
projection.

— Typically a 2-fold savings in Navier-Stokes solution time.

— Cost: 1 (or 2) matvecs in E per timestep

2. Preconditioned CG or GMRES to solve
EAp=g'-Ep°

Py - P\, Spectral Element Method for Navier-Stokes (MP 89)

WRT: Find ue X", p € YV such that:

1 1 ;
E(Vu,Vv)GL + E(u,v)m - 0,V -v)y = (£,v)g, Vvex¥ cH!
— (¢, V-ug =0 vgeYV cI?
Velocity, u in Py, continuous
Pressure, p in P, ,, discontinuous
AP I PV

Gauss-Lobatto Legendre points Gauss Legendre points
(velocity) (pressure)

Initial guess for Ax" = b" via projection (A=E,SPD)

Given - §”

-{#&1,..., &} satisfying 2] AZ; = 55,
-Set Z:=rof;, o= iiTIl (best fit solution)
- Set Ab:=p" — Az
- Solve AAz = Ab to tol e
st =TI+ Az
- If (I = lmax) then

(black box solver)

Navier-Stokes Solution Strategy

B Semi-implicit: explicit treatment of nonlinear term.
B |eads to Stokes saddle problem, which is algebraically split
MPR 90, Blair-Perot 93,

Couzy 95
H _DT u* w _(Bf+ ]-)Tﬂ/r—l
D o ot S,
[H —5HB_ DT (u \__(Bf+ DTyt ) N (z)
0 [ =71y 0
£ = 2'pp-ipT r=O(A)

B E - consistent Poisson operator for pressure, SPD
— Stiffest substep in Navier-Stokes time advancement
— Most compute-intensive phase
— Spectrally equivalent to SEM Laplacian, A

Initial guess for Ep® = g" via projection onto previous solutions
(F 93 98)

Wl p"-p'll,= OAr) + O( g, )

B two additional mat-vecs per step

W storage: 2+, vectors

max

M results with/without projection (1.6 million pressure nodes)

L

¢ 4 fold reduction in iteration count, 2 — 4 in typical applications
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Overlapping Additive Schwarz Preconditioner for the Pressure
(Dryja & Widlund 87, Pahl 93, PF 97, FMT 00)

o o o ols o o n’ © é‘r‘ o o
Overlapping Solves: Poisson problems Coarse Grid Solve: Poisson problem
with homogeneous Dirichlet bcs. using linear finite elements on spectral
element mesh (GLOBAL).

2D Test Problem: Startup flow past a cylinder (N=7)

Performance of the additive Schwarz algorithm, (107°)
FDM No=0 | No=1 | N,=3 Ag=0 | Deflation
K iter CPU |iter CPU |iter CPU |iter CPU|iter CPU |iter CPU
93 |67 44 121 10. |64 59 |49 56 | 169 19. |126 17
372 114 37. |203 74. |106 43. | 73 39. | 364 193. |216 125.
1488 166 225. 303 470. | 158 274. | 107 242. | 802 1798. 327 845.

" 1488

93\ 372

Residual history Resistant pressure mode, p'% - p>, (K=1488)

Overlapping Schwarz Precondtioning for Pressure
(Dryja & Widlund 87, Pahl 93, PF 97, FMT 00)

E
2=Plr=R/A;'Ryr +X R,JA, /'R, .1

A,, - low-order FEM Laplacian stiffness matrix on overlapping domain
for each spectral element k (Orszag, Canuto & Quarteroni, Deville & Mund, Casarin

R,, - Boolean restriction matrix enumerating nodes within
overlapping domain ¢

A, - FEM Laplacian stiffness matrix on coarse mesh (~ EX E )

R, - Interpolation matrix from coarse to fine mesh

Impact of High-Aspect Ratio Elements

® Nonconforming discretizations eliminate unnecessary elements in
the far field and result in better conditioned systems.

pEmAnEmm

Figure 1: K=93 conforming (left) and K = 77 nonconforming (right)
spectral element meshes for flow past a cylinder.

Table 1: Iteration Count for Cylinder Problem

Conforming Nonconforming

K 372 ] 1488 | 77 | 308 | 1232
iter 107 | 161 | 50 | 58

——

Iteration count bounded
with refinement - scalable

Overlapping Schwarz - local solve complexity

m Exploit local tensor-product structure

B Fast diagonalization method (FDM) - local solve cost is ~
4d K N @D (Lynch et al 64)

2D: A = (By@ A, + Ay@B.), STAS=A, STBS=1.
AT = (S,@8,) (T @A + A, @) (S @ ST).
NOTE: B,, B, lumped 1D mass matrices (conditioning)

Op. Count: W =8KN® (vs. 4K N? for band solve)

Storage: S =0O(KN?) (vs. KN? for band solve)
NOTE: 8,®S,u = S,US] (matrix-matrix product)

Stabilizing Convection-Dominated Flows
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Stabilizing High-Order Methods

In the absence of eddy viscosity, some type of stabilization is
generally required at high Reynolds numbers.

Some options:

— high-order upwinding (e.g., DG, WENO)
— bubble functions

— spectrally vanishing viscosity

— filtering

— dealiasing

Numerical Stability Test: Shear Layer Roll-Up

(Bell et al. JCP 89, Brown & Minion, JCP 95, F. & Mullen, CRAS 2001)

(1024,8) @ = 0.05, t = 1.2

© @

2562 /
~ 4

(256,16) @ = 0.05, t = 1.2
N

® >

2562 /
~ )

Figure 1: Vorticity for different (K, N) pairings: (a-d) p = 30, Re = 10°, contours from -70 to
70 by 140/15; (e-f) p = 100, Re = 40,000, contours from -36 to 36 by 72/13. (cf. Fig. 3c in [4])

Spectral Filter Boyd 98, F. & Mullen 01

B Expand in modal basis: AN A A $13
() ip op (7 DO N2

) = Fiu)

B In higher space dimensions:

F=Fg

B Spectral convergence and continuity
preserved. (Coefficients decay Transfer function oy,
exponentially fast.) o

B Post-processing (easy) !

Error in Predicted Growth Rate for (waix s zang se
Orr-Sommerfeld Problem at Re=7500

Spatial and Temporal Convergence (F. & Mullen, 01)

At = 0.003125 N=17 2nd Order 3rd Order
N =00 a=02 At =00 =02 =00 a=02
7 0.23641 0.27450 0.20000 0.12621 0.12621 171.370 0.02066
9 0.00173 0.11929 0.10000 0.03465 0.03465 0.00267 0.00268
11 0.00455 0.01114 0.05000 0.00910 0.00911 161.134 0.00040
13 0.00004 0.00074 0.02500 0.00238 0.00238 1.04463 0.00012
15 0.00010 0.00017 0.01250 0.00065 0.00066 0.00008 0.00008

W= W=
@)l (@)
NS

Base velocity profile and perturbation streamlines

Spectral Filter

Boyd ‘98, F. & Mullen ‘01

Transfer function characterized by two parameters:
— amplitude, a ~ 0.01—0.25
— cut-off wavenumber, k, k

1 ]
a
. 03 4
e
[
<
° 06 4
b=
o
c
2 04 1
=
@
2
s 0z —
=
0 ]
0 1 2 3 4 S 6 7 g 9 10

Filtering permits Re 4, > 700 for transitional boundary
layer calculations

[}, Re=700

goms!
Jooul
Soos

e

“u
/

Figuze 1: Principal vorte simactuzes idenified by Az = =1 isosucfaces at Rew = T00: standing homeshoe WOriex  ooes
(a), interlaced tails (&), hairpin head (), and beidge (d). Colors indicate pressure. (K=1021, N = 15).

Re = 3500
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Why Does Filtering Work ?
( Or, Why Do the Unfiltered Equations Fail? )

Double shear layer example:

‘ ‘ [ ‘ AN
B N

R
P

IR IR

L
PR
Y7 s
YR
A
[N

High-strain regions
are troublesome...

Aliased / Dealiased Eigenvalues: wu;+c¢-Vu =20

— For straining case,(%;u;?

— Rotational case is skew-symmetric.
— Filtering attacks the leading-order unstable mode.

IRERRR]

® Velocity fields model first-order terms in expansion of straining and rotating flows.

Why Does Filtering Work ?
( Or, Why Do the Unfiltered Equations Fail? )

du

Consider the model problem:

Weighted residual formulation:

B?.': =1 m,ﬁ«bu,‘_dV:symm. pos. def.

2 Vi d

be Ve dV — |

g5z

= skew symmetric, if V- e=0.

Discrete problem should never blow up.

Stabilization Summary

B Filtering acts like well-tuned hyperviscosity

— Attacks only the fine scale modes (that, numerically speaking,
shouldn’t have energy anyway...)

— Can precisely identify which modes in the SE expansion to
suppress (unlike differential filters)

— Does not compromise spectral convergence

B Dealiasing of convection operator recommended for high
Reynolds number applications to avoid spurious eigenvalues

— Can run double shear-layer roll-up problem forever with
-Vv=0,

— no filtering

Why Does Filtering Work ?
( Or, Why Do the Unfiltered Equations Fail? )

Weighted residual formulation vs. spectral element method:
(/'ij = (@ia c: VO]) = 7(}]‘,',

C‘“ = (¢ - V(Pj),\: #= _Cji,

This suggests the use of over-integration (dealiasing) to ensure
that skew-symmetry is retained

Coy = oy, (J&) - IV

Jpy = RN} interpolation matrix (1D, single element)

Dealiased Shear Layer Roll-Up Problem, 1282

V =0, no filter V=10%, no filter

V=0, filter = (.1,.025)

However, Johan Malm established that we do eventually get blow-up with the case on the left!
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Thank you!

Time for Questions!
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